Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 135
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38473789

In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing in two niches-the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell fates by suppressing gene expression that is required for deciding alternate cell fates. Several histone deacetylase (HDAC) inhibitors can affect adult neurogenesis in vivo. However, data regarding the role of specific HDACs in cell fate decisions remain limited. Herein, we demonstrate that HDAC8 participates in the regulation of the proliferation and differentiation of NSCs/neural progenitor cells (NPCs) in the adult mouse SVZ. Specific knockout of Hdac8 in NSCs/NPCs inhibited proliferation and neural differentiation. Treatment with the selective HDAC8 inhibitor PCI-34051 reduced the neurosphere size in cultures from the SVZ of adult mice. Further transcriptional datasets revealed that HDAC8 inhibition in adult SVZ cells disturbs biological processes, transcription factor networks, and key regulatory pathways. HDAC8 inhibition in adult SVZ neurospheres upregulated the cytokine-mediated signaling and downregulated the cell cycle pathway. In conclusion, HDAC8 participates in the regulation of in vivo proliferation and differentiation of NSCs/NPCs in the adult SVZ, which provides insights into the underlying molecular mechanisms.


Adult Stem Cells , Neural Stem Cells , Percutaneous Coronary Intervention , Animals , Mice , Lateral Ventricles , Histone Deacetylase Inhibitors , Cell Proliferation , Mammals
2.
Stem Cell Res Ther ; 14(1): 352, 2023 12 10.
Article En | MEDLINE | ID: mdl-38072920

BACKGROUND: Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) sheets have recently attracted attention as an alternative approach to injected cell suspensions for stem cell therapy. However, cell engraftment and cytokine expression levels between hUC-MSC sheets and their cell suspensions in vivo have not yet been compared. This study compares hUC-MSC in vivo engraftment efficacy and cytokine expression for both hUC-MSC sheets and cell suspensions. METHODS: hUC-MSC sheets were prepared using temperature-responsive cell culture; two types of hUC-MSC suspensions were prepared, either by enzymatic treatment (trypsin) or by enzyme-free temperature reduction using temperature-responsive cell cultureware. hUC-MSC sheets and suspensions were transplanted subcutaneously into ICR mice through subcutaneous surgical placement and intravenous injection, respectively. hUC-MSC sheet engraftment after subcutaneous surgical transplantation was investigated by in vivo imaging while intravenously injected cell suspensions were analyzing using in vitro organ imaging. Cytokine levels in both transplant site tissues and blood were quantified by enzyme-linked immunosorbent assay. RESULTS: After subcutaneous transplant, hUC-MSC sheets exhibited longer engraftment duration than hUC-MSC suspensions. This was attributed to extracellular matrix (ECM) and cell-cell junctions retained in sheets but enzymatically altered in suspensions. hUC-MSC suspensions harvested using enzyme-free temperature reduction exhibited relatively long engraftment duration after intravenous injection compared to suspensions prepared using trypsin, as enzyme-free harvest preserved cellular ECM. High HGF and TGF-ß1 levels were observed in sheet-transplanted sites compared to hUC-MSC suspension sites. However, no differences in human cytokine levels in murine blood were detected, indicating that hUC-MSC sheets might exert local paracrine rather than endocrine effects. CONCLUSIONS: hUC-MSC sheet transplantation could be a more effective cell therapeutic approach due to enhanced engraftment and secretion of therapeutic cytokines over injected hUC-MSC suspensions.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mice , Animals , Trypsin/metabolism , Mice, Inbred ICR , Mesenchymal Stem Cells/metabolism , Cytokines/metabolism , Umbilical Cord
3.
Nat Commun ; 14(1): 6420, 2023 10 12.
Article En | MEDLINE | ID: mdl-37828010

Identification of factors that regulate chromatin condensation is important for understanding of gene regulation. High-mobility group AT-hook (HMGA) proteins 1 and 2 are abundant nonhistone chromatin proteins that play a role in many biological processes including tissue stem-progenitor cell regulation, but the nature of their protein function remains unclear. Here we show that HMGA2 mediates direct condensation of polynucleosomes and forms droplets with nucleosomes. Consistently, most endogenous HMGA2 localized to transposase 5- and DNase I-inaccessible chromatin regions, and its binding was mostly associated with gene repression, in mouse embryonic neocortical cells. The AT-hook 1 domain was necessary for chromatin condensation by HMGA2 in vitro and in cellulo, and an HMGA2 mutant lacking this domain was defective in the ability to maintain neuronal progenitors in vivo. Intrinsically disordered regions of other proteins could substitute for the AT-hook 1 domain in promoting this biological function of HMGA2. Taken together, HMGA2 may regulate neural cell fate by its chromatin condensation activity.


Chromatin , Gene Expression Regulation , Mice , Animals , Nucleosomes , Stem Cells , Cell Differentiation/genetics
4.
EMBO J ; 42(14): e113349, 2023 07 17.
Article En | MEDLINE | ID: mdl-37306101

NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear. Here, we identify ULK1 as a kinase responsible for the phosphorylation of p62. ULK1 colocalizes with p62 bodies, directly interacting with p62. ULK1-dependent phosphorylation of p62 allows KEAP1 to be retained within p62 bodies, thus activating NRF2. p62S351E/+ mice are phosphomimetic knock-in mice in which Ser351, corresponding to human Ser349, is replaced by Glu. These mice, but not their phosphodefective p62S351A/S351A counterparts, exhibit NRF2 hyperactivation and growth retardation. This retardation is caused by malnutrition and dehydration due to obstruction of the esophagus and forestomach secondary to hyperkeratosis, a phenotype also observed in systemic Keap1-knockout mice. Our results expand our understanding of the physiological importance of the redox-independent NRF2 activation pathway and provide new insights into the role of phase separation in this process.


NF-E2-Related Factor 2 , Oxidative Stress , Humans , Animals , Mice , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Phosphorylation , Sequestosome-1 Protein/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Autophagy/physiology , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
5.
J Biol Chem ; 299(6): 104810, 2023 06.
Article En | MEDLINE | ID: mdl-37172729

RNA sequencing (RNA-seq) is a powerful technique for understanding cellular state and dynamics. However, comprehensive transcriptomic characterization of multiple RNA-seq datasets is laborious without bioinformatics training and skills. To remove the barriers to sequence data analysis in the research community, we have developed "RNAseqChef" (RNA-seq data controller highlighting expression features), a web-based platform of systematic transcriptome analysis that can automatically detect, integrate, and visualize differentially expressed genes and their biological functions. To validate its versatile performance, we examined the pharmacological action of sulforaphane (SFN), a natural isothiocyanate, on various types of cells and mouse tissues using multiple datasets in vitro and in vivo. Notably, SFN treatment upregulated the ATF6-mediated unfolded protein response in the liver and the NRF2-mediated antioxidant response in the skeletal muscle of diet-induced obese mice. In contrast, the commonly downregulated pathways included collagen synthesis and circadian rhythms in the tissues tested. On the server of RNAseqChef, we simply evaluated and visualized all analyzing data and discovered the NRF2-independent action of SFN. Collectively, RNAseqChef provides an easy-to-use open resource that identifies context-dependent transcriptomic features and standardizes data assessment.


Gene Expression Profiling , Internet , Isothiocyanates , RNA-Seq , Software , Sulfoxides , Animals , Mice , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , RNA-Seq/methods , RNA-Seq/standards , Organ Specificity/drug effects , Reproducibility of Results , Mice, Obese , Unfolded Protein Response/drug effects , Liver/drug effects , Muscle, Skeletal/drug effects , Antioxidants/metabolism , Data Visualization
6.
EMBO J ; 42(14): e112614, 2023 07 17.
Article En | MEDLINE | ID: mdl-37096681

Tumor-initiating cells are major drivers of chemoresistance and attractive targets for cancer therapy, however, their identity in human pancreatic ductal adenocarcinoma (PDAC) and the key molecules underlying their traits remain poorly understood. Here, we show that a cellular subpopulation with partial epithelial-mesenchymal transition (EMT)-like signature marked by high expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) is the origin of heterogeneous tumor cells in PDAC. We demonstrate that ROR1 depletion suppresses tumor growth, recurrence after chemotherapy, and metastasis. Mechanistically, ROR1 induces the expression of Aurora kinase B (AURKB) by activating E2F through c-Myc to enhance PDAC proliferation. Furthermore, epigenomic analyses reveal that ROR1 is transcriptionally dependent on YAP/BRD4 binding at the enhancer region, and targeting this pathway reduces ROR1 expression and prevents PDAC growth. Collectively, our findings reveal a critical role for ROR1high cells as tumor-initiating cells and the functional importance of ROR1 in PDAC progression, thereby highlighting its therapeutic targetability.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Nuclear Proteins/metabolism , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Epithelial-Mesenchymal Transition , Cell Proliferation , Gene Expression Regulation, Neoplastic , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Cell Cycle Proteins/metabolism , Pancreatic Neoplasms
7.
Elife ; 122023 01 25.
Article En | MEDLINE | ID: mdl-36695573

Skeletal muscle exhibits remarkable plasticity in response to environmental cues, with stress-dependent effects on the fast-twitch and slow-twitch fibers. Although stress-induced gene expression underlies environmental adaptation, it is unclear how transcriptional and epigenetic factors regulate fiber type-specific responses in the muscle. Here, we show that flavin-dependent lysine-specific demethylase-1 (LSD1) differentially controls responses to glucocorticoid and exercise in postnatal skeletal muscle. Using skeletal muscle-specific LSD1-knockout mice and in vitro approaches, we found that LSD1 loss exacerbated glucocorticoid-induced atrophy in the fast fiber-dominant muscles, with reduced nuclear retention of Foxk1, an anti-autophagic transcription factor. Furthermore, LSD1 depletion enhanced endurance exercise-induced hypertrophy in the slow fiber-dominant muscles, by induced expression of ERRγ, a transcription factor that promotes oxidative metabolism genes. Thus, LSD1 serves as an 'epigenetic barrier' that optimizes fiber type-specific responses and muscle mass under the stress conditions. Our results uncover that LSD1 modulators provide emerging therapeutic and preventive strategies against stress-induced myopathies such as sarcopenia, cachexia, and disuse atrophy.


Glucocorticoids , Muscular Diseases , Mice , Animals , Glucocorticoids/metabolism , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Transcription Factors/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism
8.
Cancer Sci ; 114(4): 1541-1555, 2023 Apr.
Article En | MEDLINE | ID: mdl-36562400

The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long-term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short-term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA-induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA-sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial-mesenchymal transition (EMT), including thrombospondin-1 (THBS1), which encodes a pro-EMT-secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA-induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression.


Acidosis, Lactic , Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Up-Regulation , Acidosis, Lactic/genetics , Cell Line, Tumor , Cholangiocarcinoma/pathology , Epithelial-Mesenchymal Transition/genetics , Phenotype , Cell Movement/genetics , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/pathology , Thrombospondins/genetics , Tumor Microenvironment/genetics
9.
Methods Mol Biol ; 2577: 55-64, 2023.
Article En | MEDLINE | ID: mdl-36173565

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is the most widely used method for analyzing genome-wide DNA-protein interactions. Because there is considerable variation in the modes and strengths of DNA-protein interactions, chromatin immunoprecipitation (ChIP) protocols have been diversified and optimized for different needs. Here, we describe protocols for detecting histone modifications and modifiers using various crosslinking and immunoprecipitation conditions. We provide a complete ChIP-seq workflow covering sample preparation, immunoprecipitation, next-generation sequencing (NGS) library preparation, and data analyses.


Chromatin Immunoprecipitation Sequencing , Histone Code , Chromatin/genetics , Chromatin Immunoprecipitation/methods , DNA , Gene Library , High-Throughput Nucleotide Sequencing/methods
10.
Nucleic Acids Res ; 50(17): 9765-9779, 2022 09 23.
Article En | MEDLINE | ID: mdl-36095121

Nucleus-mitochondria crosstalk is essential for cellular and organismal homeostasis. Although anterograde (nucleus-to-mitochondria) pathways have been well characterized, retrograde (mitochondria-to-nucleus) pathways remain to be clarified. Here, we found that mitochondrial dysfunction triggered a retrograde signaling via unique transcriptional and chromatin factors in hepatic cells. Our transcriptomic analysis revealed that the loss of mitochondrial transcription factor A led to mitochondrial dysfunction and dramatically induced expression of amphiregulin (AREG) and other secretory protein genes. AREG expression was also induced by various mitochondria stressors and was upregulated in murine liver injury models, suggesting that AREG expression is a hallmark of mitochondrial damage. Using epigenomic and informatic approaches, we identified that mitochondrial dysfunction-responsive enhancers of AREG gene were activated by c-JUN/YAP1/TEAD axis and were repressed by chromatin remodeler BRG1. Furthermore, while mitochondrial dysfunction-activated enhancers were enriched with JUN and TEAD binding motifs, the repressed enhancers possessed the binding motifs for hepatocyte nuclear factor 4α, suggesting that both stress responsible and cell type-specific enhancers were reprogrammed. Our study revealed that c-JUN and YAP1-mediated enhancer activation shapes the mitochondrial stress-responsive phenotype, which may shift from metabolism to stress adaptation including protein secretion under such stressed conditions.


Epigenomics , Mitochondria , Amphiregulin/metabolism , Animals , Chromatin/genetics , Chromatin/metabolism , Hepatocyte Nuclear Factors/metabolism , Mice , Mitochondria/genetics , Mitochondria/metabolism
11.
Life Sci ; 302: 120648, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35598658

AIMS: Lactic acidosis (LA) generated in tumor microenvironment promotes tumor metastasis and drug resistance. This study aimed to demonstrate the impacts and the mechanisms of LA on aldehyde dehydrogenase1A3 (ALDH1A3) in promoting aggressiveness and gemcitabine resistance in cholangiocarcinoma (CCA) cell lines. The clinical relevance and the molecular pathway related to the upregulation of ALDH1A3 in LA cells will be revealed. MAIN METHODS: ALDH1A3 expression and its clinical significances in CCA tissues were analyzed using the GEO databases. Human CCA cell lines, KKU-213A-LA and KKU-213B-LA maintained in the LA medium were studied and compared with its parental cells cultured in normal medium. Aggressive features-proliferation, colony formation, migration, invasion, and gemcitabine response were determined. Expression of ALDH1A3, EGFR and the downstream effectors were analyzed using real-time PCR and Western blotting. KEY FINDINGS: ALDH1A3 was upregulated in patient CCA tissues and correlated with LDHA and shorter survival of CCA patients. mRNA and protein of ALDH1A3 were increased in LA cells. Attenuation of ALDH1A3 expression by siRNA significantly reduced cell proliferation, colony formation, migration, invasion, and gemcitabine resistance of LA cells, and gemcitabine resistant cells. The EGF/EGFR signaling via Erk and STAT3 was pinned to be involved in the induction of ALDH1A3 expression in LA cells. The transcriptomic analysis from TCGA dataset supported the links between LDHA, EGFR and ALDH1A3 in several tumor tissues. SIGNIFICANCE: Lactic acidosis upregulated EGFR and ALDH1A3 expression, leading to the aggressiveness of CCA cells. The EGFR/ALDH1A3 axis could be a novel therapeutic target to eradicate metastatic CCA.


Acidosis, Lactic , Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Aldehydes , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Cholangiocarcinoma/metabolism , ErbB Receptors/genetics , Gemcitabine , Tumor Microenvironment
12.
Sci Rep ; 12(1): 5593, 2022 04 04.
Article En | MEDLINE | ID: mdl-35379840

Tissue aging is a major cause of aging-related disabilities and a shortened life span. Understanding how tissue aging progresses and identifying the factors underlying tissue aging are crucial; however, the mechanism of tissue aging is not fully understood. Here we show that the biosynthesis of S-adenosyl-methionine (SAM), the major cellular donor of methyl group for methylation modifications, potently accelerates the aging-related defects during Drosophila oogenesis. An aging-related increase in the SAM-synthetase (Sam-S) levels in the germline leads to an increase in ovarian SAM levels. Sam-S-dependent biosynthesis of SAM controls aging-related defects in oogenesis through two mechanisms, decreasing the ability to maintain germline stem cells and accelerating the improper formation of egg chambers. Aging-related increases in SAM commonly occur in mouse reproductive tissue and the brain. Therefore, our results raise the possibility suggesting that SAM is the factor related to tissue aging beyond the species and tissues.


Drosophila , S-Adenosylmethionine , Aging , Animals , Methionine Adenosyltransferase , Mice , Oogenesis
13.
iScience ; 25(4): 104040, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35330687

The XPC protein complex plays a central role in DNA lesion recognition for global genome nucleotide excision repair (GG-NER). Lesion recognition can be accomplished in either a UV-DDB-dependent or -independent manner; however, it is unclear how these sub-pathways are regulated in chromatin. Here, we show that histone deacetylases 1 and 2 facilitate UV-DDB-independent recruitment of XPC to DNA damage by inducing histone deacetylation. XPC localizes to hypoacetylated chromatin domains in a DNA damage-independent manner, mediated by its structurally disordered middle (M) region. The M region interacts directly with the N-terminal tail of histone H3, an interaction compromised by H3 acetylation. Although the M region is dispensable for in vitro NER, it promotes DNA damage removal by GG-NER in vivo, particularly in the absence of UV-DDB. We propose that histone deacetylation around DNA damage facilitates the recruitment of XPC through the M region, contributing to efficient lesion recognition and initiation of GG-NER.

14.
Life Sci Alliance ; 5(7)2022 07.
Article En | MEDLINE | ID: mdl-35321919

The nucleolus is the site of ribosome assembly and formed through liquid-liquid phase separation. Multiple ribosomal DNA (rDNA) arrays are bundled in the nucleolus, but the underlying mechanism and significance are unknown. In the present study, we performed high-content screening followed by image profiling with the wndchrm machine learning algorithm. We revealed that cells lacking a specific 60S ribosomal protein set exhibited common nucleolar disintegration. The depletion of RPL5 (also known as uL18), the liquid-liquid phase separation facilitator, was most effective, and resulted in an enlarged and un-separated sub-nucleolar compartment. Single-molecule tracking analysis revealed less-constrained mobility of its components. rDNA arrays were also unbundled. These results were recapitulated by a coarse-grained molecular dynamics model. Transcription and processing of ribosomal RNA were repressed in these aberrant nucleoli. Consistently, the nucleoli were disordered in peripheral blood cells from a Diamond-Blackfan anemia patient harboring a heterozygous, large deletion in RPL5 Our combinatorial analyses newly define the role of RPL5 in rDNA array bundling and the biophysical properties of the nucleolus, which may contribute to the etiology of ribosomopathy.


Cell Nucleolus , Ribosomal Proteins , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Humans , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
15.
Cell Rep ; 38(6): 110332, 2022 02 08.
Article En | MEDLINE | ID: mdl-35139389

Endothelial cells (ECs) are phenotypically heterogeneous, mainly due to their dynamic response to the tissue microenvironment. Vascular endothelial cell growth factor (VEGF), the best-known angiogenic factor, activates calcium-nuclear factor of activated T cells (NFAT) signaling following acute angiogenic gene transcription. Here, we evaluate the global mapping of VEGF-mediated dynamic transcriptional events, focusing on major histone-code profiles using chromatin immunoprecipitation sequencing (ChIP-seq). Remarkably, the gene loci of immediate-early angiogenic transcription factors (TFs) exclusively acquire bivalent H3K4me3-H3K27me3 double-positive histone marks after the VEGF stimulus. Moreover, NFAT-associated Pax transactivation domain-interacting protein (PTIP) directs bivalently marked TF genes transcription through a limited polymerase II running. The non-canonical polycomb1 variant PRC1.3 specifically binds to and allows the transactivation of PRC2-enriched bivalent angiogenic TFs until conventional PRC1-mediated gene silencing is achieved. Knockdown of these genes abrogates post-natal aberrant neovessel formation via the selective inhibition of indispensable bivalent angiogenic TF gene transcription. Collectively, the reported dynamic histone mark landscape may uncover the importance of immediate-early genes and the development of advanced anti-angiogenic strategies.


Angiogenesis Inducing Agents/metabolism , Genes, Immediate-Early/genetics , Histones/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Chromatin Immunoprecipitation , Chromatin Immunoprecipitation Sequencing , Endothelial Cells/metabolism , Epigenesis, Genetic/genetics , Gene Silencing/physiology , Humans , Mice , Neovascularization, Pathologic/genetics , Promoter Regions, Genetic/genetics
16.
PLoS One ; 17(1): e0262488, 2022.
Article En | MEDLINE | ID: mdl-35085309

Cellular senescence is accompanied by metabolic and epigenomic remodeling, but the transcriptional mechanism of this process is unclear. Our previous RNA interference-based screen of chromatin factors found that lysine methyltransferases including SETD8 and NSD2 inhibited the senescence program in cultured fibroblasts. Here, we report that loss of the zinc finger and homeobox protein 3 (ZHX3), a ubiquitously expressed transcription repressor, induced senescence-associated gene expression and mitochondrial-nucleolar activation. Chromatin immunoprecipitation-sequencing analyses of growing cells revealed that ZHX3 was enriched at the transcription start sites of senescence-associated genes such as the cyclin-dependent kinase inhibitor (ARF-p16INK4a) gene and ribosomal RNA (rRNA) coding genes. ZHX3 expression was consistently downregulated in cells with replicative or oncogene-induced senescence. Mass spectrometry-based proteomics identified 28 proteins that interacted with ZHX3, including ATP citrate lyase and RNA metabolism proteins. Loss of ZHX3 or ZHX3-interaction partners by knockdown similarly induced the expression of p16INK4a and rRNA genes. Zhx3-knockout mice showed upregulation of p16INK4a in the testes, thymus and skeletal muscle tissues, together with relatively short survival periods in males. These data suggested that ZHX3 plays an essential role in transcriptional control to prevent cellular senescence.


Cell Nucleolus/genetics , Cellular Senescence/genetics , Gene Expression Regulation/genetics , Gene Expression/genetics , Homeodomain Proteins/genetics , Mitochondria/genetics , Repressor Proteins/genetics , Animals , Cell Proliferation/genetics , Chromatin/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Replication/genetics , Down-Regulation/genetics , Epigenomics/methods , Female , Fibroblasts/physiology , Humans , Male , Mice , Mice, Inbred C57BL , RNA, Ribosomal/genetics , Transcription Initiation Site/physiology , Up-Regulation/genetics
17.
Blood Cancer Discov ; 2(4): 370-387, 2021 07.
Article En | MEDLINE | ID: mdl-34258103

Lysine demethylase 5A (KDM5A) is a negative regulator of histone H3K4 trimethylation, a histone mark associated with activate gene transcription. We identify that KDM5A interacts with the P-TEFb complex and cooperates with MYC to control MYC targeted genes in multiple myeloma (MM) cells. We develop a cell-permeable and selective KDM5 inhibitor, JQKD82, that increases histone H3K4me3 but paradoxically inhibits downstream MYC-driven transcriptional output in vitro and in vivo. Using genetic ablation together with our inhibitor, we establish that KDM5A supports MYC target gene transcription independent of MYC itself, by supporting TFIIH (CDK7)- and P-TEFb (CDK9)-mediated phosphorylation of RNAPII. These data identify KDM5A as a unique vulnerability in MM functioning through regulation of MYC-target gene transcription, and establish JQKD82 as a tool compound to block KDM5A function as a potential therapeutic strategy for MM.


Lysine , Multiple Myeloma , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinases/metabolism , Genes, cdc , Humans , Methylation , Multiple Myeloma/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA Polymerase II , Retinoblastoma-Binding Protein 2 , Cyclin-Dependent Kinase-Activating Kinase
18.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article En | MEDLINE | ID: mdl-34074765

Testicular androgen is a master endocrine factor in the establishment of external genital sex differences. The degree of androgenic exposure during development is well known to determine the fate of external genitalia on a spectrum of female- to male-specific phenotypes. However, the mechanisms of androgenic regulation underlying sex differentiation are poorly defined. Here, we show that the genomic environment for the expression of male-biased genes is conserved to acquire androgen responsiveness in both sexes. Histone H3 at lysine 27 acetylation (H3K27ac) and H3K4 monomethylation (H3K4me1) are enriched at the enhancer of male-biased genes in an androgen-independent manner. Specificity protein 1 (Sp1), acting as a collaborative transcription factor of androgen receptor, regulates H3K27ac enrichment to establish conserved transcriptional competency for male-biased genes in both sexes. Genetic manipulation of MafB, a key regulator of male-specific differentiation, and Sp1 regulatory MafB enhancer elements disrupts male-type urethral differentiation. Altogether, these findings demonstrate conservation of androgen responsiveness in both sexes, providing insights into the regulatory mechanisms underlying sexual fate during external genitalia development.


Genitalia, Male/metabolism , Sex Differentiation , Acetylation , Androgens , Animals , CRISPR-Cas Systems , Female , Gene Expression Regulation , Histones/metabolism , MafB Transcription Factor , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Receptors, Androgen , Transcription Factors/metabolism
19.
Blood Adv ; 5(9): 2305-2318, 2021 05 11.
Article En | MEDLINE | ID: mdl-33929501

Acute myeloid leukemia (AML) is a heterogenous malignancy characterized by distinct lineage subtypes and various genetic/epigenetic alterations. As with other neoplasms, AML cells have well-known aerobic glycolysis, but metabolic variations depending on cellular lineages also exist. Lysine-specific demethylase-1 (LSD1) has been reported to be crucial for human leukemogenesis, which is currently one of the emerging therapeutic targets. However, metabolic roles of LSD1 and lineage-dependent factors remain to be elucidated in AML cells. Here, we show that LSD1 directs a hematopoietic lineage-specific metabolic program in AML subtypes. Erythroid leukemia (EL) cells particularly showed activated glycolysis and high expression of LSD1 in both AML cell lines and clinical samples. Transcriptome, chromatin immunoprecipitation-sequencing, and metabolomic analyses revealed that LSD1 was essential not only for glycolysis but also for heme synthesis, the most characteristic metabolic pathway of erythroid origin. Notably, LSD1 stabilized the erythroid transcription factor GATA1, which directly enhanced the expression of glycolysis and heme synthesis genes. In contrast, LSD1 epigenetically downregulated the granulo-monocytic transcription factor C/EBPα. Thus, the use of LSD1 knockdown or chemical inhibitor dominated C/EBPα instead of GATA1 in EL cells, resulting in metabolic shifts and growth arrest. Furthermore, GATA1 suppressed the gene encoding C/EBPα that then acted as a repressor of GATA1 target genes. Collectively, we conclude that LSD1 shapes metabolic phenotypes in EL cells by balancing these lineage-specific transcription factors and that LSD1 inhibitors pharmacologically cause lineage-dependent metabolic remodeling.


Leukemia, Erythroblastic, Acute , CCAAT-Enhancer-Binding Protein-alpha , GATA1 Transcription Factor/genetics , Histone Demethylases/genetics , Humans , Leukemia, Erythroblastic, Acute/genetics , Proto-Oncogene Proteins , Transcription Factors
20.
Nat Metab ; 3(2): 196-210, 2021 02.
Article En | MEDLINE | ID: mdl-33619377

Ketone bodies are generated in the liver and allow for the maintenance of systemic caloric and energy homeostasis during fasting and caloric restriction. It has previously been demonstrated that neonatal ketogenesis is activated independently of starvation. However, the role of ketogenesis during the perinatal period remains unclear. Here, we show that neonatal ketogenesis plays a protective role in mitochondrial function. We generated a mouse model of insufficient ketogenesis by disrupting the rate-limiting hydroxymethylglutaryl-CoA synthase 2 enzyme gene (Hmgcs2). Hmgcs2 knockout (KO) neonates develop microvesicular steatosis within a few days of birth. Electron microscopic analysis and metabolite profiling indicate a restricted energy production capacity and accumulation of acetyl-CoA in Hmgcs2 KO mice. Furthermore, acetylome analysis of Hmgcs2 KO cells revealed enhanced acetylation of mitochondrial proteins. These findings suggest that neonatal ketogenesis protects the energy-producing capacity of mitochondria by preventing the hyperacetylation of mitochondrial proteins.


Energy Metabolism/physiology , Ketone Bodies/biosynthesis , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , 3-Hydroxybutyric Acid/metabolism , Acetylation , Animals , Animals, Newborn , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Microvessels/physiology , Oxygen Consumption
...